CACO : Competitive Ant Colony Optimization, A Nature-Inspired Metaheuristic For Large-Scale Global Optimization
نویسنده
چکیده
Large-scale problems are nonlinear problems that need metaheuristics, or global optimization algorithms. This paper reviews nature-inspired metaheuristics, then it introduces a framework named Competitive Ant Colony Optimization inspired by the chemical communications among insects. Then a case study is presented to investigate the proposed framework for large-scale global optimization.
منابع مشابه
Ant Colony Optimization with a Genetic Restart Approach toward Global Optimization
Ant Colony Optimization (ACO) a nature-inspired metaheuristic algorithm has been successfully applied in the traveling salesman problem (TSP) and a variety of combinatorial problems. In fact, ACO can effectively fit to discrete optimization problems and exploit pre-knowledge of the problems for a faster convergence. We present an improved version of ACO with a kind of Genetic semi-random-restar...
متن کاملSolving the Vehicle Routing Problem with Simultaneous Pickup and Delivery by an Effective Ant Colony Optimization
One of the most important extensions of the capacitated vehicle routing problem (CVRP) is the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) where customers require simultaneous delivery and pick-up service. In this paper, we propose an effective ant colony optimization (EACO) which includes insert, swap and 2-Opt moves for solving VRPSPD that is different with common an...
متن کاملA stochastic nature inspired metaheuristic for clustering analysis
This paper presents a new stochastic nature inspired methodology, which is based on the concepts of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), for optimally clustering N objects into K clusters. Due to the nature of stochastic and population-based search, the proposed algorithm can overcome the drawbacks of traditional clustering methods. Its performance is compared wi...
متن کاملInvestigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks
Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algori...
متن کاملInvestigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks
Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.4044 شماره
صفحات -
تاریخ انتشار 2013